Projection Pursuit Density Estimation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projection Pursuit Density Estimation

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

متن کامل

Efficient Parametric Projection Pursuit Density Estimation

Product models of low dimensional experts are a powerful way to avoid the curse of dimensionality. We present the "under­ complete product of experts" (UPoE), where each expert models a one dimensional pro­ jection of the data. The UPoE may be inter­ preted as a parametric probabilistic model for projection pursuit. Its ML learning rules are identical to the approximate learning rules proposed ...

متن کامل

Projection Pursuit via Decomposition of Bias Termsof Kernel Density

Dimension reduction of data, < d ! < p (p << d), to be used for clustering has speciic requirements that are not generally met by generic dimension reduction algorithms such as principal components. Projection pursuit, on the other hand, has a growing variety of criteria that target holes, skewness, etc., using information measures, density functionals, sample moments, etc. With the exception o...

متن کامل

Functional Projection Pursuit

This article describes the adaption of exploratory projection pursuit for use with functional data. The aim is to nd \interesting" projections of functional data: e.g. to separate curves into meaningful clusters. Functional data are projected onto low-dimensional subspaces determined by a projection function using a suitable inner product. Such a projection is rapidly computed by representing d...

متن کامل

Oblique Projection Matching Pursuit

Recent theory of compressed sensing (CS) tells us that sparse signals can be reconstructed from a small number of random samples. In reconstruction of sparse signals, greedy algorithms, such as the orthogonal matching pursuit (OMP), have been shown to be computationally efficient. In this paper, the performance of OMP is shown to be dependent on how well information of the underlying signals is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 1984

ISSN: 0162-1459,1537-274X

DOI: 10.1080/01621459.1984.10478086